Solubility and dissimilatory reduction kinetics of iron(III) oxyhydroxides: A linear free energy relationship
نویسندگان
چکیده
Rates of reduction of Fe(III) oxyhydroxides by the bacterium Shewanella putrefaciens were measured as a function of the bacterial density and the Fe(III) substrate concentration. The results show that an earlier reported positive correlation between the solubility products (Kso) and the maximum cell-specific reduction rates (vmax) of predominantly poorly crystalline Fe(III) oxyhydroxides also applies to insoluble and crystalline Fe(III) oxyhydroxides. The mineral solubilities were measured by a dialysis bag technique under acidic conditions (pH 1 up to 2.5) at 25 C. Initial iron reduction rates by S. putrefaciens were determined in the presence of excess lactate as electron donor. In all cases, the microbial reduction rate exhibited saturation behavior with respect to the Fe(III) oxyhydroxide concentration. On a double logarithmic scale, the maximum rates vmax and the solubility products defined a single linear free energy relationship (LFER) for all the Fe(III) oxyhydroxides considered. The solubility provided a better predictor of vmax than the specific surface area of the mineral phase. A rate limitation by the electron transfer between an iron reductase and a Fe(III) center, or by the subsequent desorption of Fe from the iron oxide mineral surface, are both consistent with the observed LFER. 2009 Elsevier Ltd. All rights reserved.
منابع مشابه
Bio-reduction of Fe(III) ores using three pure strains of Aeromonas hydrophila, Serratia fonticola and Clostridium celerecrescens and a natural consortium.
The present work describes a research approach to the anaerobic bioleaching of Fe(III) ores. Three strains (Serratia fonticola, Aeromonas hydrophila and Clostridium celerecrescens) isolated from an acidic abandoned mine were selected to test their ability to reduce dissimilatory Fe(III). Total iron bio-reduction was achieved after 48 h using either the consortium or the Aeromonas cultures. In t...
متن کاملAlteration of iron-rich lacustrine sediments by dissimilatory iron-reducing bacteria
The reduction of Fe during bacterial anaerobic respiration in sediments and soils not only causes the degradation of organic matter but also results in changes in mineralogy and the redistribution of many nutrients and trace metals. Understanding trace metal patterns in sedimentary rocks and predicting the fate of contaminants in the environment requires a detailed understanding of the mechanis...
متن کاملThe effect of mechanical activation on the carbothermic reduction kinetics of hematite-graphite mixture
The effect of mechanical activation on structural changes and kinetics of carbothermic reduction of hematite with graphite was studied in this research. Hematite powder mixture with graphite (with stoichiometry ratio C/O=1) was milled for the time periods of zero to 50 hours, and the structural changes were studied using X ray diffraction (XRD). The effect of mechanical activation on the kineti...
متن کاملGeochemical cycling of mercury in a deep, confined aquifer: Insights from biogeochemical reactive transport modeling
Total dissolved mercury concentrations (HgT) were measured in groundwaters collected along a flow path within a deep, confined aquifer (i.e., the Carrizo Sand) in southeastern Texas, USA, along with major solutes, pH, and redox sensitive parameters that include dissolved iron species [Fe(II), Fe(III)] and sulfide [S(-II)] concentrations. Mercury concentrations range from below detection (<0.43 ...
متن کاملReduction of Fe(III) colloids by Shewanella putrefaciens: A kinetic model
A kinetic model for the microbial reduction of Fe(III) oxyhydroxide colloids in the presence of excess electron donor is presented. The model assumes a two-step mechanism: (1) attachment of Fe(III) colloids to the cell surface and (2) reduction of Fe(III) centers at the surface of attached colloids. The validity of the model is tested using Shewanella putrefaciens and nanohematite as model diss...
متن کامل